ISSN - 2229-3620 APPROVED UGC CARE

GGS)

SHODH SANCHAR BULLETIN

Vol. 10, Issue 40, October - December, 2020 Page Nos. 1-7

AN INTERNATIONAL BILINGUAL PEER REVIEWED REFEREED RESEARCH JOURNAL

A STUDY ON IMPACT OF UGC (USER GENERATED CONTENT) ON CUSTOMERS

Mr G. Hemanth Reddy* Dr. K. Naga Raju**

ABSTRACT

The research explores the impact of user generated content on customer that is ratings and reviews. The research applies Hoffman's theory of moral development that is mimicry (I), classical conditioning (II), direct association (III), mediated association (IV) and role taking (V). Further impact of educational qualification and age on mimicry (I), classical conditioning (II), direct association (III), mediated association (IV) and role taking (V) is explored with t-test and ANOVA test.

Keywords: Mimicry, Classical conditioning, Direct association, Mediated association, Role taking

INTRODUCTION

Marketing has recently undergone major changes in delivery of information to customers (Brandt, 2008). Since the concept of User Generated Content is in initial stage of research phase there is no generic definition for it (Christodoulides et al., 2012). However, the present research adopts the definition of Christodoulides et al. (2012) i.e. "different types of media content that are public, created and disseminated by customers."

In 1990s Mirror neuron was discovered in the F5 region of the promoter cortex in macaque monkeys (di Pellegrion, Fadiga, Fogassi, Gallese, & Rixxolatti, 1992) and it also found in humans (Giacomo, Rizzolatti, Laila Craighero, 2004). "When the monkey does a particular action or it observes actions of others mirror neuron discharges" (di Pellegrion, Fadiga, Fogassi, Gallese, & Rixxolatti, 1992). "Customers get the purchase experience through purchase of product/brand and now a days they are getting the mirror purchase experience for the product/ brand by observing the reviews,

ratings of others" (Nagaraju Kolla, 2019). Hence, companies have to address both purchase experience and mirror purchase experience.

USER GENERATED CONTENT AND CUSTOMERS

Based on how customer feel about the user generated content Nagaraju Kolla (2019) classify the customers into three types; imitator, ignorer and explorer.

Imitator: Imitators are the customer who imitative the user generated content. The following are ways the customers imitate the user generated content;

- I. "Customers observe the user generated content directly i.e. they observe the feelings of friends of that particular brand directly and imitate there feeling.
- II. Customer may observe the features of peers (clues) for that particular brand or situation of peers for that particular brand and takes as it is of peers and imitate them while making the brand purchase.

^{**}Associate Professor, Sri Ramakrishna P.G College, NGO's Colony, Nandyal

^{*}Vice Chairman, Sri Ramakrishna P.G College, NGO's Colony, Nandyal

- III. Some time customers observe the direct expression or situation of others and it reminds the customers own past experience. Then the customer feels the emotion that he felt during the original experience/imitation.
- IV. Customer may observe the rating or review i.e. indirect observation through words. Then the customer imagines that rating or review impact of their own past experience. Then customer imitates the rating / review.
- V. Customer may imagine themselves in the rating /review .i.e. indirect observation or imagine the how the reviewer is feeling and imitate them" (Hoffman, M. L. 2000) (Nagaraju Kolla, 2019).

In the entire above mechanism common element is customer is feeling emotions because something happens to someone else. In psychology we have name for it called as empathy and Hoffman's theory of moral development summarizes the above mechanism with mimicry(I), classical conditioning(II), direct association(III), mediated association(IV) and role taking(V). Hoffman's theory is most comprehensive theory of empathy. There is perspective difference between emotional expression and situation. The above mechanisms follow both so whatever the perspective you apply empathy exists.

Explorer: Explores are the customers who have more information than user generated content and other reasons are;

I. "If the customer have more information than ratings and reviews

- II. If the ratings and reviews doesn't communicate full information about the situation
- III. If the social class, culture, current context i.e. psychological state makes the customer to interpret the ratings and reviews in different and exploration happen" (Wondra & Ellsworth, 2015) and (Nagaraju Kolla, 2019)

The similar idea of explorers have presented by Wondra and Ellsworth in her discussion of different information hypothesis (I & II) and different states hypothesis (III).

METHODOLOGY OF THE STUDY

Sampling Method: Convenience sampling

Sample Size: 405 (Rayalaseema Region of Andhra Pradesh)

Primary Data: Questionnaire.

Secondary Data: Journals, Magazines, Books, Websites.

Data analysis: Frequency tables, Mean, t-test and ANOVA test

Impact of Educational qualification on mimicry, classical conditioning, direct association, mediated association, role taking, different information hypothesis and different states hypothesis.

T-test is used to test the impact of educational qualification on mimicry, classical conditioning, direct association, mediated association, role taking, different information hypothesis and different states hypothesis.

Table-1: Group Statistics and Independent Samples Test

	Educational	N	Mean	Std.	Std. Error
	Qualification			Deviation	Mean
Mimicry	Under Graduation	194	3.1031	1.40307	.10073
	and Below				
	Post Graduation and	211	3.1517	1.41614	.09749
	Above				
Classical	Under Graduation	194	3.0103	1.52012	.10914
conditioning	and Below				
	Post Graduation and	211	3.0664	1.37853	.09490
	Above				

Direct association	Under Graduation and Below	194	3.0773	1.42850	.10256
	Post Graduation and Above	211	2.9573	1.39833	.09626
Mediated association	Under Graduation and Below	194	2.7165	1.40946	.10119
	Post Graduation and Above	211	3.1232	1.44880	.09974
Role taking	Under Graduation and Below	194	2.8918	1.35953	.09761
	Post Graduation and Above	211	2.9573	1.39833	.09626
Different information	Under Graduation and Below	194	2.8969	1.51322	.10864
hypothesis	Post Graduation and Above	211	3.0142	1.33266	.09174
Different states hypothesis	Under Graduation and Below	194	2.9175	1.40443	.10083
	Post Graduation and Above	211	2.9336	1.37507	.09466

Independent Samples Test

		Leve	ne's	t-test for Equality of Means							
Test for											
Equality of											
Variances											
		F	Sig.	t	df	Sig. (2-	Mean	Std. Error	95	%	
						tailed)	Difference	Differenc	Confidence		
								e	Interval	of the	
									Differ	rence	
									Lower	Upper	
Mimicry	Equal	.272	.602	346	403	.729	04857	.14024	32426	.22713	
	variance										
	S										
	assumed										
	Equal			346	400.748	.729	04857	.14019	32416	.22702	
	variance										
	s not										
	assumed										
Classical	Equal	6.842	.009	389	403	.697	05604	.14404	33920	.22712	
conditionin	variance										
g	S										
	assumed										
	Equal			387	390.186	.699	05604	.14463	34039	.22831	
	variance										
	s not										
	assumed										

Direct	Equal	.241	.624	.854	403	.394	.11997	.14053	15630	.39625
association										
	S									
	assumed Equal			.853	398.560	.394	.11997	.14066	15656	.39650
	variance			.055	376.300	.5)+	.11///	.14000	13030	.37030
	s not									
	assumed									
Mediated	Equal	.313	.576	-	403	.064	40673	.14225	68637	-
association				2.859						.12708
	S									
	assumed									
	Equal			-	401.709	.064	40673	.14208	68605	-
	variance			2.863						.12741
	s not									
D 1	assumed	000	0.60	470	402	600	0.6550	10705	225.42	20.422
Role	Equal	.002	.968	478	403	.633	06559	.13725	33542	.20423
taking	variance									
	s assumed									
	Equal			478	401.736	.633	06559	.13709	33510	.20391
	variance			. 170	101.750	.033	.00337	.13707	.55510	.20371
	s not									
	assumed									
Different	Equal	7.872	.005	829	403	.407	11731	.14144	39537	.16075
informatio	variance									
n	S									
hypothesis										
	Equal			825	386.003	.410	11731	.14220	39689	.16227
	variance									
	s not									
D:cct	assumed	245	557	117	402	007	01612	12010	20777	25552
Different	Equal variance	.345	.557	117	403	.907	01612	.13818	28777	.25553
states										
hypothesis	s assumed									
	Equal			117	398.578	.907	01612	.13831	28802	.25578
	variance			,,,,,	370.370	.,,,,,	.01012	.15051	.23002	.23370
	s not									
	assumed									

Source: Primary data

Significance vale is greater than 0.05 hence there is no impact of educational qualification on mimicry, classical conditioning, direct association, mediated association, role taking, different information hypothesis and different states hypothesis.

Impact of age on mimicry, classical conditioning, direct association, mediated association, role taking, different information hypothesis and different states hypothesis.

ANOVA is used to test the impact of age on mimicry, classical conditioning, direct association, mediated association, role taking, different information hypothesis and different states hypothesis.

Table-2: ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
Mimicry	Between Groups	6.135	2	3.067	1.551	.213
	Within Groups	795.189	402	1.978		
	Total	801.323	404			
Classical conditioning	Between Groups	1.245	2	.622	.296	.744
	Within Groups	844.123	402	2.100		
	Total	845.368	404			
Direct association	Between Groups	2.464	2	1.232	.616	.540
	Within Groups	803.447	402	1.999		
	Total	805.911	404			
Mediated association	Between Groups	2.048	2	1.024	.491	.613
	Within Groups	838.876	402	2.087		
	Total	840.923	404			
Role taking	Between Groups	13.996	2	6.998	3.732	.025
	Within Groups	753.782	402	1.875		
	Total	767.778	404			
Different information	Between Groups	.086	2	.043	.021	.979
hypothesis	Within Groups	816.200	402	2.030		
	Total	816.286	404			
Different states hypothesis	Between Groups	1.888	2	.944	.489	.614
	Within Groups	775.890	402	1.930		
	Total	777.778	404			

Source: Primary data

Significance vale is greater than 0.05 hence there is no impact of age on mimicry, classical conditioning, direct association. mediated association, role taking, different information hypothesis and different states hypothesis.

Ignorer: Ignorers are the customers who never observe the ratings and reviews. The following are might be the reasons;

- I. "Customer fails to observe the ratings and reviews intentionally (Wondra & Ellsworth).
- II. Lack of past experience (Wondra & Ellsworth)
- III. Regulation of his emotion to ratings and reviews and trusting company ads/ intuitive purchase behaviour (Wondra & Ellsworth)
- IV. If the information of the ratings and reviews are too little
- V. If customer observe the routine words
- VI. If customer lacks the sufficient information
- VII. If the customer observes ratings and reviews as neutral." (Wondra & Ellsworth, 2015) and (Nagaraju Kolla, 2019).

REFERENCES

- Brandt, K.S. (2008) 'You should be on YouTube', ABA Bank Marketing, Vol. 40, No. 6
- Christodoulides. G., Jevons. C.. Bonhomme, J. (2012). Memo to Marketers: Quantitative Evidence for Change - How User-Generated Content Affects Brands. Journal of Advertising Research, 52(1), 53-64.
- Decety, J., Yang, C.-Y., & Cheng, Y. (2010). Physicians down-regulate their pain empathy response: An event-related brain potential study. NeuroImage, 50, 1676 -1682. http://dx.doi.org/10.1016/j.neuroimage .2010.01.025
- Di Pellegrino G, Fadiga L, Fogassi L, Gallese Rizzolatti 1992. V. G. Understanding motor events:

- neurophysiological study. Exp. Brain Res. 91:176-80
- Giacomo Rizzolatti1 and Laila Craighero(2004). The Mirror-Neuron System, Annu. Rev. Neurosci, 27:169-92.
 - 10.1146/annurev.neuro.27.070203.144230
- G., & Prahalad, C. K. Hamel, (1996). Competing for the future. Boston, Mass: Harvard Business School Press.
- Hickok, G. (2014). The myth of mirror The real neuroscience neurons: communication and cognition. W W Norton & Co.
- Hoffman, M. L. (2000). Empathy and Moral Development: Implications for Caring and Cambridge University Justice. Cambridge, U.K.
- Hoffman, M. L. (2000). Empathy and moral development: Implications for caring and justice. Cambridge University Press.
- https://bigthink.com/risk-reason-andreality/cancer-phobia-fear-of-the-diseasecan-do-as-much-harm-or-more-than-thedisease-itself
- https://en.wikipedia.org/wiki/Moment_of_tr uth (marketing)
- https://www.amazon.in/gp/help/customer/dis play.html?nodeId=201910730
- https://www.forbes.com/sites/kashmirhill/20 14/06/28/facebook-manipulated-689003users-emotions-for-science/#527d4a53197c
- https://www.ted.com/talks/vilayanur_ramach andran_the_neurons_that_shaped_civilizatio n
- Kaplan, A.M. and Haenlein, M. (2010). Users of the world, unite! the challenges and opportunities of social media, Business Horizons, Vol. 53 No. 1, pp. 59-68
- Nagaraju Kolla.(2019). Mirror neurons and Branding. Hyderabad, Telangana State: Paramount Publishing House. ISBN: 978-93-8808-66-8

- Rizzolatti G, Craighero L. The mirror-neuron system. Annu Rev Neurosci. 2004;27:169-92. doi: 10.1146/annurev.neuro.27.070203.144230. PMID: 15217330.
- Rizzolatti G. 2004. The mirror-neuron system and imitation. In Perspectives on Imitation: From Mirror Neurons to Memes, ed. S Hurley, N Chater. Cambridge, MA: MIT Press.
- Wondra & Ellsworth (2015). An Appraisal Theory of Empathy and Other Vicarious Emotional Experiences. Psychological Review, 122, 411–428.
- Wondra, J.D., & Ellsworth, P. (2015). An appraisal theory of empathy and other vicarious emotional experiences. Psychological review, 122 3, 411-28.

