

III YEAR V SEMESTER BSc MPCs SYLLABUS

SRI RAMAKRISHNA DEGREE COLLEGE (AUTONOMOUS)

NANDYAL

Rayalaseema University, Kurnool Semester-wise Revised Syllabus under CBCS, 2020-21

> Domain Subject: **MATHEMATICS** III Year B.A./B.Sc.– Semester – V

Max Marks: 100

(15h)

Course-6B: Multiple integrals and applications of Vector calculus (Skill Enhancement Course (Elective), 5 credits)

I. Learning Outcomes:

Students after successful completion of the course will be able to

- 1. Learn multiple integrals as a natural extension of definite integral to a function of two variables in the case of double integral / three variables in the case of triple integral.
- 2. Learn applications in terms of finding surface area by double integral and volume by triple integral.
- 3. Determine the gradient, divergence and curl of a vector and vector identities.
- 4. Evaluate line, surface and volume integrals.
- 5. understand relation between surface and volume integrals (Gauss divergence theorem), relation between line integral and volume integral (Green's theorem), relation between line and surface integral (Stokes theorem)

II. Syllabus: (Hours: Teaching: 75 (incl. unit tests etc.05), Training: 15)

Unit – 1: Multiple integrals-I

1.	Introduction,	Double	integrals,	Evaluation	of	double	integrals,	Properties	of	double	
	integrals.										

- 2. Region of integration, double integration in Polar Co-ordinates,
- 3. Change of variables in double integrals, change of order of integration.

 Unit – 2: Multiple integrals-II Triple integral, region of integration, change of variables. Plane areas by double integrals, surface area by double integral. Volume as a double integral, volume as a triple integral. 	(15h)
 Unit – 3: Vector differentiation Vector differentiation, ordinaryderivatives of vectors. Differentiability, Gradient, Divergence, Curl operators, Formulae involving the separators. 	(15h)
 Unit – 4: Vector integration 1. Line Integrals with examples. 2. Surface Integral with examples. 3. Volume integral with examples. 	(15h)

Unit – 5: Vector integration applications

- 1. Gauss theorem and applications of Gauss theorem.
- 2. Green's theorem in plane and applications of Green's theorem.
- 3. Stokes's theorem and applications of Stokes theorem.

III. Reference Books:

- 1.Dr.M Anitha, Linear Algebra and Vector Calculus for Engineer, Spectrum University Press, SR Nagar, Hyderabad-500038, INDIA.
- 2.Dr.M.Babu Prasad, Dr.K.Krishna Rao, D.Srinivasulu, Y.AdiNarayana, Engineering Mathematics-II, Spectrum University Press, SR Nagar, Hyderabad-500038,INDIA.
- 3. V.Venkateswararao, N. Krishnamurthy, B.V.S.S.Sarma and S.Anjaneya Sastry, A text Book of B.Sc., Mathematics Volume-III, S. Chand & Company, Pvt. Ltd., Ram Nagar, NewDelhi-110055.
- 4. R.Gupta, Vector Calculus, Laxmi Publications.
- 5. P.C.Matthews, Vector Calculus, Springer Verlag publications.

6. Web resources suggested by the teacher and college librarian including reading material.

IV. Co-Curricular Activities:

A) Mandatory:

1. For Teacher: Teacher shall train students in the following skills for 15 hours, by taking

Relevant outside data (Field/Web).

1. The methods of evaluating double integrals and triple integrals in the class room and train to evaluate These integrals of different functions over different regions.

2. Applications of line integral, surface integral and volume integral.

3. Applications of Gauss divergence theorem, Green's theorem and Stokes's theorem.

2. For Student: Fieldwork/Project work Each student individually shall undertake Fieldwork/Project work and submit a

report not exceeding 10 pages in the given format on the work-done in the areas like the

following, by choosing any one of the following aspects.

1. Going through the web sources like Open Educational Resources to find the values of double and triple integrals of specific functions in a given region and make conclusions. (or)

2. Going through the web sources like Open Educational Resources to evaluate line integral, surface integral and volume integral and apply Gauss divergence theorem, Green's theorem and Stokes theorem and make conclusions.

3. Max. Marks for Fieldwork/Project work Report: 05.

4. Suggested Format for Fieldwork/Project work Report: Title page, Student Details, Index page,

Stepwise work-done, Findings, Conclusions and Acknowledgements.

4. Unit tests (IE).

b) Suggested Co-Curricular Activities:

1. Assignments/collection of data, Seminar, Quiz, Group discussions/Debates

2. Visits to research organizations, Statistical Cells, Universities, ISI etc.

3. Invited lectures and presentations on related topics by experts in the specified are

V. Suggested Question Paper Pattern:

Max.Marks:70

Time:3 hrs

SECTION - B (Total: 5 X 4=20Marks) (Answer any five questions. Each answer carries 4 Marks) (At least 1 question should be given from each Unit)

		, ,
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
8.		

SECTION - C (Total: $5 \times 10 = 50$ Marks)

(Answer ALL the questions. Each question carries 10 Marks)

1.	(a) or (b)
2.	(a) or (b)
3.	(a) or (b)
4.	(a) or (b)
5.	(a) or (b)

Rayalaseema University, Kurnool

Semester-wise Revised Syllabus under CBCS, 2020-21

Domain Subject: MATHEMATICS

III Year B.A./B.Sc.– Semester – V

Max Marks: 100

Course-7B: Integral transforms with applications

(Skill Enhancement Course (Elective), 5 credits)

I. Learning Outcomes:

Students after successful completion of the course will be able to

- 1. Evaluate Laplace transforms of certain functions, find Laplace transforms of derivatives and of integrals.
- 2. Determine properties of Laplace transform which may be solved by application of special functions namely Dirac delta function, error function, Bessel function and periodic function.
- 3. Understand properties of inverse Laplace transforms, find inverse Laplace transforms of derivatives and of integrals.
- 4. Solve ordinary differential equations with constant/ variable coefficients by using Laplace transform method.
- 5. Comprehend the properties of Fourier transforms and solve problems related to finite Fourier transforms.
- II. Syllabus : (Hours: Teaching: 75 (incl. unit tests etc.05), Training: 15)

Unit – 1: Laplace transforms- I

- 1. Definition of Laplace transform, linearity property-piecewise continuous function.
- 2. Existence of Laplace transform, functions of exponential order and of class A.
- 3. First shifting theorem, second shifting theorem and change of scale property.

Unit – 2: Laplace transforms- II

- 1. Laplace Transform of the derivatives, initial value theorem and final value theorem. Laplace transforms of integrals.
- 2. Laplace transform of tⁿ. f (t), division by t, evolution of integrals by Laplace transforms.
- 3. Laplace transform of some special functions-namely Dirac delta function, error function, Bessel function and Laplace transform of periodic function.

Unit – 3: Inverse Laplace transforms-I

- **1.** Definition of Inverse Laplace transform, linear property, first shifting theorem, second shifting theorem, change of scale property.
- 2. Inverse Laplace Transforms by use of partial fractions.

Unit – 4: Inverse Laplace transforms-II

- 1. Inverse Laplace transforms of derivatives, inverse, Laplace transforms of integrals, multiplication by powers of 'p', division by 'p'.
- 2. Convolution, convolution theorem proof and applications. Heaviside Expansion formula and its applications.

(15h)

(15h)

(15h)

(15h)

Unit – 5: Applications of Laplace transforms

- 1. Solutions of differential equations with constants coefficients, solutions of differential equations with variable coefficients.
- 2. Applications of Laplace transforms to integral equations- Abel's integral equation

(15h)

III. Reference Books:

- 1. Dr. S.Sreenadh, S.Ranganatham, Dr.M.V.S.S.N.Prasad, Dr. V.Ramesh Babu, Fourier series and Integral Transforms, S. Chand & Company, Pvt. Ltd., Ram Nagar, New Delhi-110055.
- 2. A.R. Vasistha, Dr. R.K. Gupta, Laplace Transforms, Krishna Prakashan Media Pvt. Ltd. Meerut.

3. M.D.Raisinghania, H.C. Saxsena , H.K. Dass, Integral Transforms, S. Chand & Company Pvt. Ltd., Ram Nagar, New Delhi-110055.

4. Dr. J.K. Goyal, K.P. Gupta, Laplace and Fourier Transforms, Pragathi Prakashan, Meerut.

5. Shanthi Narayana , P.K. Mittal, A Course of Mathematical Analysis, S. Chand & Company Pvt.Ltd. Ram Nagar, New Delhi-110055.

6. Web resources suggested by the teacher and college librarian including reading material.

IV. Co-Curricular Activities:

A) Mandatory:

1. For Teacher: Teacher shall train students in the following skills for 15 hours, by taking Relevant outside data (Field/Web).

1. Demonstrate on sufficient conditions for the existence of the Laplace transform of a function.

2. Evaluation of Laplace transforms and methods of finding Laplace transforms.

3. Evaluations of Inverse Laplace transforms and methods of finding Inverse Laplace transforms.

4. Fourier transforms and solutions of integral equations.

2. For Student: Fieldwork/Project work; Each student individually shall undertake Fieldwork/Project work and submit a

report not exceeding 10 pages in the given format on the work-done in the areas like the following, by choosing any one of the aspects.

- 1. Going through the web sources like Open Educational Resources on Applications of Laplace transforms and Inverse Laplace transforms to find solutions of ordinary differential equations with constant /variable coefficients and make conclusions. (or)
- 2. Going through the web sources like Open Educational Resources on Applications of convolution theorem to solve integral equations and make conclusions. (or)
- 3. Going through the web source like Open Educational Resources on Applications of Fourier transforms to solve integral equations and make conclusions.

4. Max. Marks for Fieldwork/Project work Report: 05.

4. **Suggested Format for Fieldwork/Project work Report**: Title page, Student Details, Index page,

Stepwise work-done, Findings, Conclusions and Acknowledgements.

5. Unit tests (IE).

b) Suggested Co-Curricular Activities:

- 1. Assignments/collection of data, Seminar, Quiz, Group discussions/Debates
- 2. Visits to research organizations, Statistical Cells, Universities, ISI etc.
- 3. Invited lectures and presentations on related topics by experts in the specified area.

V. Suggested Question Paper Pattern:

Max.Marks:70

Time:3 hrs

SECTION - A (Total: 5 X 4=20Marks)

(Answer any five questions. Each answer carries 4 Marks)

(At least 1 question should be given from each Unit)

1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	

SECTION - B (Total: 5 X 10 = 50 Marks) (Answer ALL the questions. Each question carries **10 Marks**)

(a) or (b)
(a) or (b)

A.P. STATE COUNCIL OF HIGHER EDUCATION

Semester-wise Revised Syllabus under CBCS, 2020-21

Course Code:

Four-year B.Sc. (Hons) Domain Subject: **PHYSICS** IV Year B. Sc.(Hons) – Semester – V

Max Marks: 100+50

Course 6B: LOW TEMPERATURE PHYSICS & REFRIGERATION

(Skill Enhancement Course (Elective), Credits: 05)

I. Learning Outcomes: Students after successful completion of the course will be able to

- 1. Identify various methods and techniques used to produce low temperatures in the Laboratory.
- 2. Acquire a critical knowledge on refrigeration and air conditioning.
- 3. Demonstrate skills of Refrigerators through hands on experience and learns about refrigeration components and their accessories.
- 4. Understand the classification, properties of refrigerants and their effects on environment.
- 5. Comprehend the applications of Low Temperature Physics and refrigeration.

II. Syllabus: (Total Hours: 90 including Teaching, Lab, Field Training, Unit tests etc.)

UNIT-I PRODUCTION OF LOW TEMPERATURE (10 hrs)

Production of low temperatures-Introduction, Freezing mixtures, Joule-Thomson effect, Regenerative cooling, Different methods of liquefaction of gases, liquefaction of air, Production of liquid hydrogen and nitrogen, Adiabatic demagnetization, Properties of materials at low temperatures, Superconductivity

UNIT-II MEASUREMENT OF LOW TEMPERATURE (10 hrs)

Gas thermometer and its correction and calibration, Secondary thermometers, resistance thermometers, thermocouples, Vapour pressure thermometers, Magnetic thermometers, Advantages and drawbacks of each type of thermometer.

UNIT-III PRINCIPLES OF REFRIGERATION (10 hrs)

Introduction to Refrigeration- Natural and artificial refrigeration, Stages of refrigeration, Types of refrigeration - Vapor compression and vapor absorption refrigeration systems, Refrigeration cycle and explanation with a block diagram, Introductory ideas on airconditioning.

Refrigerants-Introduction, Ideal refrigerant, Properties of refrigerant, Classification of refrigerants, commonly used refrigerants, Eco-friendly refrigerants

UNIT-IV COMPONENTS OF REFIGERATOR (10 hrs)

Refrigerator and its working, Block diagram, Coefficient of Performance (COP), Tons of refrigeration (TR) and Energy Efficiency Ratio (EER), Refrigerator components: Types of compressors, evaporators and condensers and their functional aspects, defrosting in a refrigerator, Refrigerant leakage and detection

UNIT-V APPLICATIONS OF LOW TEMPERATURE & REFRIGERATION (10 hrs.)

Applications of Low temperatures: Preservation of biological material, Food freezing, liquid nitrogen and liquid hydrogen in medical field, Superconducting magnets in MRI- Tissue ablation (cryosurgery) - Cryogenic rocket propulsion system.

Applications of refrigeration: Domestic refrigerators, Water coolers, Cold storages, Ice plants, Food preservation methods, Chemical and Process industries, Cold treatment of metals, Construction field, Desalination of water, Data centers.

III. References:

- 1. Heat and Thermodynamics by Brij Lal &N.Subramanyam, S.Chand Publishers.
- 2. Thermal Physics by S C Garg, R M Bansal & C K Ghosh, McGrawHill Education, India
- 3. Heat and Thermodynamics by M MZemansky, McGrawHill Education (India).
- 4. Low-Temperature Physics by Christian E. & Siegfried H., Springer.
- 5. Thermal Engineering by S. Singh, S.Pati, Ch:18 Introduction to Refrigeration.
- 6. The Physics Hyper Text Book. Refrigerators.https://physics.info/refrigerators/
- 7. Refrigeration and Air Conditioning by Manohar Prasad, New age international (P) limited, New Delhi
- 8. A course in Refrigeration and Air Conditioning by S.C. Arora and S. Domkundwar, Dhanpatrai and sons, Delhi

9.https://trc.nist.gov/cryogenics/Papers/Review/2017-

Low_Temperature_Applications_and_Challenges.pdf

10. https://nptel.ac.in/content/storage2/courses/112105129/pdf/RAC%20Lecture%203.pdf

11. Other Web sources suggested by the teacher concerned and the reading material. https://nptel.ac.in_

Course 6B: Low Temperature Physics & Refrigeration

PRACTICAL SYLLABUS (30 Hrs. Max Marks: 50)

IV. Learning Outcomes: On completion of practical course, student shall be able to

- 1. List out, identify and handle equipment used in refrigeration and low temperature lab.
- 2. Learn the procedures of preparation of Freezing Mixtures.
- 3. Demonstrate skills on developing various Freezing mixtures and materials and their applications in agriculture, medicine and day to day life.
- 4. Acquire skills in observing and measuring various methodologies of very low temperatures
- 5. Perform some techniques related to Refrigeration and Freezing in daily life.

V. Practical (Laboratory) Syllabus: (30 hrs. Max marks: 50))

- 1. Record the Principles and applications of Refrigerators and Freezers.
- 2. Measure the temperatures below Melting point of Ice using a thermometer available in the Lab.
- 3. Make a freezing mixture by adding different salts viz., Sodium chloride, Potassium Hydrate (KOH), Calcium chloride to ice in different proportions and observe the temperature changes.
- 4. Study the operation of a refrigerator and understand the working of different parts.
- 5. Study the properties of refrigerants like chlorofluorocarbons-hydrochlorofluoro- carbons and record the lowest temperatures obtained.
- 6. Consider a simple faulty refrigerator and try to troubleshoot the simple problems by understanding its working.

- 7. Understand the practical problem of filling the Freon Gas into the Refrigerator.
- 8. Get the Liquid Nitrogen or Liquid Helium from nearby Veterinary Hospital and measure their temperatures using chromel-alumel thermocouple or mercury thermometer and observe their physical properties like colour, smell etc and precautions to be taken for their safe handling.
- 9. Preparation of freeze drying food with Dry ice and liquid nitrogen
- 10. Preparation of freeze drying food with liquid nitrogen

VI. Lab References:

- 1. Experimental techniques in low temperature physics by Guy White, PhilipMeeson.
- 2. Experimental low-temperature physics by A. Kent, Macmillan physical science series
- 3. Physics and Chemistry at Low Temperatures by Leonid Khriachtchev.

https://www.routledge.com/Physics-and-Chemistry-at-Low-Temperatures

/Khriachtchev/p/book/9789814267519

- 4. Practical Cryogenics .http://research .physics illinois.edu /bezryadin /links/ practical%20Cryogenics.pdf
- 5. Freeze-Drying, 3rd Edition by Peter Haseley, Georg-Wilhelm Oetjen, Wiley (e-Book)

6. Web sources suggested by the teacher concerned.

VII. Co-Curricular Activities:

(a) Mandatory:(*Training of students by teacher in field related skills:* (*lab:10 + field: 05*)

- 1. **For Teacher**: Training of students by the teacher in the in the laboratory/field for a total of not less than 15 hours on the techniques/skills of Low Temperature Production, methods used and applications of Low temperatures and refrigeration in day to day life and other applications in medicine and industry.
- 2. For Student: Student shall (individually) visit (i) a small ice plant or a cold storage plant (ii) Air Conditioner (AC) repair shop or (iii) Refrigerator repair shop to understand the construction, working principle and the trouble shooting of these devices after interacting with the technicians. Or Student shall observe the various thermodynamic processes taking place while working with the refrigerator and observe the leak detection in refrigeration system by different methods, air removal and charging of a refrigeration unit and testing of a refrigeration system to find out the Refrigerating capacity/Ton of refrigeration (TR) and the Power input. Or Student shall identify the refrigerant cylinder by color coding and standing pressure. Or Student shall visit the freezer aisle of a supermarket and observes the bags of different frozen fruits. Student shall write the observations and submit a hand-written Fieldwork/Project work not exceeding 10 pages in the given format to the teacher.
- 3. Max marks for Fieldwork/Project work: 05.
- 4. Suggested Format for Fieldwork/Project work: *Title page, student details, index page, details of place visited, observations, findings and acknowledgements.*
- 5. Unit tests (IE).

(b) Suggested Co-Curricular Activities

- 1. Training of students by related Factory, industrial experts.
- 2. Assignments (including technical assignments like identifying tools in Refrigerators, Freezers and their handling, operational techniques with safety and security)
- 3. Seminars, Group discussions, Quiz, Debates etc. (on related topics).
- 4. Preparation of videos on tools and techniques in Low Temperatures and applications.
- 5. Collection of material/figures/photos related to substances used in Freezing Mixtures, their Properties and availability etc., writing and organizing them in a systematic way in a file.
- 6. Visits to Ice plants and labs in universities, research organizations, private firms, etc.
- 7. Making your own mini refrigerator at home
- 8. Build your own water cooler with the materials available at home.
- 9. Making hand launched liquid nitrogen rockets
- 10. Experiments with Liquid nitrogen and strawberry/ banana/ lemon/ onion/ mushroom/ egg etc. (*To be tried under professional supervision only*).
- 11. Invited lectures and presentations on related topics by field/industrial experts
- 12. Identification of different Ozone-depleting substances (ODS) that damage the ozone layer in the upper atmosphere.
- 13. Demonstration to illustrate the greenhouse effect and the role of carbon dioxide as a greenhouse gas using plastic water bottles, flood light lamp, beakers and temperature sensors and observe the temperature changes.

 $\frac{https://edu.rsc.org/experiments/modelling-the-greenhouse-effect/1543.article}{https://sealevel.jpl.nasa.gov/files/archive/activities/ts1hiac1.pdf}$

A.P. STATE COUNCIL OF HIGHER EDUCATION

Semester-wise Revised Syllabus under CBCS, 2020-21

Course Code:

Four-year B.Sc. (Hons) Domain Subject: **Physics** IV Year B. Sc.(Hons) – Semester – V

Max Marks: 100+50

Course 7B: Solar Energy and Applications

[Skill Enhancement Course (Elective), Credits: 05]

- **I. Learning Outcomes:** After successful completion of the course, the student will be able to:
 - 1. Understand Sun structure, forms of energy coming from the Sun and its measurement.
 - 2. Acquire a critical knowledge on the working of thermal and photovoltaic collectors.
 - 3. Demonstrate skills related to callus culture through hands on experience
 - 4. Understand testing procedures and fault analysis of thermal collectors and PV modules.

5. Comprehend applications of thermal collectors and PV modules.

II. Syllabus: (Total Hours: 90 including Teaching, Lab, Field Training, Unit tests etc.)

Unit - I: BASIC CONCEPTS OF SOLAR ENERGY (10hrs)

Spectral distribution of solar radiation, Solar constant, zenith angle and Air-Mass, standard time, local apparent time, equation of time, direct, diffuse and total radiations. Pyrheliometer - working principle, direct radiation measurement, Pyrometer-working Principle, diffuse radiation measurement, Distinction between the two meters.

Unit - II: SOLAR THERMAL COLLECTORS (10hrs)

Solar Thermal Collectors-Introduction, Types of Thermal collectors, Flat plate collector – liquid heating type, Energy balance equation and efficiency, Evacuated tube collector, collector overall heat loss coefficient, Definitions of collector efficiency factor, collector heat-removal factor and collector flow factor, Testing of flat-plate collector, solar water heating system, natural and forced circulation types.

Concentrating collectors, Solar cookers, Solar dryers, Solar desalinators.

Unit - III: FUNDAMENTALS OF SOLAR CELLS (10hrs)

Semiconductor interface, Types, homo junction, hetero junction and Schottky barrier, advantages and drawbacks, Photovoltaic cell, equivalent circuit, output parameters, conversion efficiency, quantum efficiency, Measurement of I-V characteristics, series and shunt resistance, their effect on efficiency, Effect of light intensity, inclination and temperature on efficiency

Unit -IV: TYPES OF SOLARCELLS AND MODULES (10 hrs)

Types of solar cells, Crystalline silicon solar cells, I-V characteristics, poly-Si cells, Amorphous silicon cells, Thin film solar cells-CdTe/CdS and CuInGaSe2/CdS cell configurations, structures, advantages and limitations, Multi junction cells – Double and triple junction cells. Module fabrication steps, Modules in series and parallel, Bypass and blocking diodes

Unit – V: SOLAR PHOTOVOLTAIC SYSTEMS (10hrs)

Energy storage in PV systems, Energy storage modes, electrochemical storage, Batteries, Primary and secondary, Solid-state battery, Molten solvent battery, lead acid battery and dry batteries, Mechanical storage – Flywheel, Electrical storage –Super capacitor

III. References:

1. Solar Energy Utilization by G. D. Rai, Khanna Publishers

2. Solar Energy- Fundamentals, design, modelling and applications by G.N. Tiwari, Narosa Publications, 2005.

3. Solar Energy-Principles of thermal energy collection & storage by S.P. Sukhatme, Tata Mc-Graw Hill Publishers, 1999.

4. Science and Technology of Photovoltaics, P. Jayarama Reddy, CRC Press

(Taylor & Francis Group), Leiden &BS Publications, Hyderabad, 2009.

5. Solar Photovoltaics- Fundamentals, technologies and applications, Chetan Singh Solanki, PHI Learning Pvt. Ltd.,

6. Web sources suggested by the teacher concerned and the college librarian including reading material.

- (a) <u>https://courses.edx.org/c4x/DelftX/ET.3034TU/asset/solar_energy_v1.1.pdf</u>
- (b) https://www.sku.ac.ir/Datafiles/BookLibrary/45/John%20A.%20Duffie,%20William%2 0A.%20Beckman(auth.)-Solar%20Engineering%20of%20Thermal%20Processes,%20Fourth%20Edition%20(20

Solar%20Engineering%20of%20Thermal%20Processes,%20Fourth%20Edition%20(20 13).pdf

Course 6B: Solar Energy and Applications – Practical (lab) work (30 hrs, Max Marks:50)

- **IV.** Learning Outcomes :On successful completion of this practical course, student shall be able to:
- 1. List out and identify various components of solar thermal collectors and systems, solar photovoltaic modules and systems.
- 2. Learn the procedures for measurement of direct, global and diffuse solar radiation, I V characteristics and efficiency analysis of solar cells and modules.
- 3. Demonstrate skills acquired in evaluating the performance of solar cell / module in connecting them appropriately to get required power output.
- 4. Acquire skills in identification and elimination of the damaged panels without affecting the output power in a module / array.
- 5. Perform procedures and techniques related to general maintenance of solar thermal and photovoltaic modules.

V. Practical (Laboratory) Syllabus: (30 hrs) (Max.50 Marks)

- 1. Measurement of direct radiation using pyrheliometer.
- 2. Measurement of global and diffuse radiation using pyranometer.
- 3. Evaluation of performance of a flat plate collector
- 4. Evaluation of solar cell / module efficiency by studying the I V measurements.
- 5. Determination of series and shunt resistance of a solar cell / module.
- 6. Determination of efficiency of two solar cells / modules connected in series.
- 7. Determination of efficiency of two solar cells / modules connected in parallel.
- 8. Study the effect of input intensity on the performance of solar cell / module.
- 9. Study the influence of cell / module temperature on the efficiency.
- 10. Study the effect of cell / module inclination on the efficiency.

VI. Lab References:

1.Solar Photo voltaic- Alab training manual, C.S. Solanki et al., Foundation Books Publishers, 2012.

2. Laboratory Manual on Solar thermal experiments, HP Garg, TC Kandpal, Narosa Publishing House 2000.

3. Web sources suggested by the teacher concerned.

https://renewablelab.niu.edu/experiments/solarPanel

Development of simple solar hot water collector:

https://www.youtube.com/watch?v=WP8H5IOTwYU

https://www.instructables.com/Solar-Water-Heater-From-Scratch/

VII. Co-curricular Activities:

(a) Mandatory: (Training of students by teacher in field related skills: (lab:10 + field: 05)

1. **For Teacher**: Training of students by the teacher in the in the laboratory/field for not less than 15 hours on the <u>field techniques/skills</u> related to measurement of direct, diffused and global solar radiation; demonstration of procedures used in the performance evaluation of solar flat plate collectors, solar photovoltaic cells and modules measurement of different parameters in the calculation of efficiency.

2. For Student: Students shall visit to solar thermal and photovoltaic laboratories in universities/research organizations/ nearby industries to observe and understand the techniques and procedures used for evaluation of solar collector, solar cell and module efficiencies. They shall write their observations and submit to the teacher hand-written Fieldwork/Project work not exceeding 10 pages in the given format.

3. Max marks for Fieldwork/Project work: 05.

4. Suggested Format for Fieldwork/Project work: *Title page, student details, index page, details of place visited, observations, findings and acknowledgements.*5. Unit tests (IE).

(b) Suggested Co-Curricular Activities

- 1. Training of students by related industrial/ technical experts using guest lectures/ invited talks.
- 2. Assignments (including technical assignments like identifying components of a solar hot water and solar photovoltaic systems and their handling, operational techniques and maintenance procedures with safety and security)

3. Seminars, Group discussions, Quiz, Debates etc. on related topics.

- 4. Preparation of videos on thermal and photovoltaic systems and technical procedures.
- 5. Collection of brochures/figures/photos related to products and applications of solar energy and organizing them in a systematic way in a file.

6. Making a (i) solar panel (ii) solar light (iii) solar cooker (iv) solar oven (v) solar inverter at Home.

7. Visits to nearby solar thermal system as well as solar photovoltaic power stations, firms, research organizations etc.

A.P. State Council of Higher Education Semester-wise Revised Syllabus under CBCS, 2020-21

Course Code:

Four-year B.Sc.(Hons) Domain Subject: **Computer Science** IV Year B. Sc.(Hons) – Semester – V

Max Marks: 100 + 50

Course 6A: Web Interface Designing Technologies

(Skill Enhancement Course (Elective), Credits: 05)

I. Learning Outcomes: Students after successful completion of the course will be able to:

- 1. Understand and appreciate the web architecture and services.
- 2. Gain knowledge about various components of a website.
- 3. Demonstrate skills regarding creation of a static website and an interface to dynamic website.
- 4. Learn how to install word press and gain the knowledge of installing various plugins to use in their websites.

II. Syllabus: (*Total Hours: 90 including Teaching, Lab, and Field training, Unit tests etc.*)

Unit - I (10 hours)

HTML: Introduction to web designing, difference between web applications and desktop applications, introduction to HTML, HTML structure, elements, attributes, headings, paragraphs, styles, colours, HTML formatting, Quotations, Comments, images, tables, lists, blocks and classes, HTML CSS, HTML frames, file paths, layout, symbols, HTML responsive.

Unit – II (10 hours)

HTML forms: HTML form elements, input types, input attributes, HTML5, HTML graphics, HTML media – video, audio, plug INS, you tube.

HTML API'S: Geo location, Drag/drop, local storage, HTML SSE.

CSS: CSS home, introduction, syntax, colours, back ground, borders, margins, padding, height/width, text, fonts, icons, tables, lists, position, over flow, float, CSS combinators, pseudo class, pseudo elements, opacity, tool tips, image gallery, CSS forms, CSS counters, CSS responsive.

Unit – III (10 hours)

Client side Validation: Introduction to JavaScript - What is DHTML, JavaScript, basics, variables, string manipulations, mathematical functions, statements, operators, arrays, functions. Objects in JavaScript - Data and objects in JavaScript, regular expressions, exception handling. DHTML with JavaScript - Data validation, opening a new window, messages and confirmations, the status bar, different frames, rollover buttons, moving images.

Unit – **IV** (10 hours)

Word press: Introduction to word press, servers like wamp, bitnami e.tc, installing and configuring word press, understanding admin panel, working with posts and pages, using editor, text formatting with shortcuts, working with media-Adding, editing, deleting media elements, working with widgets, menus.

Unit – \mathbf{V} (10 hours)

Working with themes-parent and child themes, using featured images, configuring settings, user and user roles and profiles, adding external links, extending word press with plug-ins. Customizing the site, changing the appearance of site using css , protecting word press website from hackers.

III. References

- 1. Chris Bates, Web Programming Building Internet Applications, Second Edition, Wiley (2007)
- 2. Paul S.WangSanda S. Katila, an Introduction to Web Design plus Programming, Thomson (2007).
- 3. Head First HTML and CSS, Elisabeth Robson, Eric Freeman, O'Reilly Media Inc.
- 4. An Introduction to HTML and JavaScript: for Scientists and Engineers, David R. Brooks. Springer, 2007
- 5. Schaum's Easy Outline HTML, David Mercer, Mcgraw Hill Professional.
- 6. Word press for Beginners, Dr.Andy Williams.
- 7. Professional word press, Brad Williams, David damstra, Hanstern.
- 8. Web resources:
 - a. http://www.codecademy.com/tracks/web
 - b. http://www.w3schools.com
 - c. https://www.w3schools.in/wordpress-tutorial/
 - d. <u>http://www.homeandlearn.co.uk</u>

9. Other web sources suggested by the teacher concerned and the college librarian including reading material.

IV. Co-Curricular Activities

a) Mandatory: (Training of students by teacher in field related skills: (lab: 10 + field: 05) :

1. **For Teacher**: Field related training of students by the teacher in laboratory/field for not less than 15 hours on identifying the case study to build a website, designing the format, structure, menus, submenus etc for a website and finally to build a website.

2. For Student: Students shall (individually) search online and visit any of the agencies like hotels, hospitals, super bazaars, organizations, etc. where there is a need for a website and identify any one case study and submit a hand-written Fieldwork/Project work/Project work/Project work/Project work Report not exceeding 10 pages. Example: Choosing a firm or business to develop a website, identifying various business entities to be included in the website, identifying menu bar and content to be placed in their websites.

3. Max marks for Fieldwork/Project work/Project work/Proj

4. Suggested Format for Fieldwork/Project work/Project work/Project work/Project work: *Title page, student details, index page, details of place visited, observations, findings and acknowledgements.*

5. Unit tests (IE).

b) Suggested Co-Curricular Activities

- 1. Build a website with 10 pages for the case study identified.
- 2. Training of students by related industrial experts.
- 3. Assignments
- 4. Seminars, Group discussions, Quiz, Debates etc. (on related topics).
- 5. Presentation by students on best websites.

Course 6A: Web Interface Designing Technologies – <u>PRACTICAL SYLLABUS</u>

V. Learning Outcomes:

On successful completion of this practical course, student shall be able to:

- 1. Create a basic website with the help of HTML and CSS.
- 2. Acquire the skill of installing word press and various plugins of Word press.
- 3. Create a static website with the help of Word press.
- 4. Create an interface for a dynamic website.
- 5. Apply various themes for their websites using Word press.

VI. Practical (Laboratory) Syllabus: (30 hrs.) HTML and CSS:

1. Create an HTML document with the following formatting options:

(a)Bold, (b) Italics, (c) Underline, (d) Headings (Using H1 to H6 heading styles), (e) Font (Type, Size and Color), (f) Background (Colored background/Image in background), (g) Paragraph, (h) Line Break, (i) Horizontal Rule, (j) Pre tag

2. Create an HTML document which consists of:

(a) Ordered List (b) Unordered List (c) Nested List (d) Image

3. Create a Table with four rows and five columns. Place an image in one column.

4. Using "table" tag, align the images as follows:

- 5. Create a menu form using html.
- 6. Style the menu buttons using css.
- 7. Create a form using HTML which has the following types of controls:
 - (a) Text Box (b) Option/radio buttons (c) Check boxes (d) Reset and Submit buttons
 - 8. Embed a calendar object in your web page.

9. Create an applet that accepts two numbers and perform all the arithmetic operations on them.

10. Create nested table to store your curriculum.

11. Create a form that accepts the information from the subscriber of a mailing system.

12. Design the page as follows:

ress 🕼) 11 (SIRCH 19), ASTAH 19				 o Unis i
	The BatM	10bile		
	Special Equipment	Specifications/Performance Data		
	Retractable protective armor Weapons System>	Eugine Type Thrusi	Jet Turbine 150lhs(ĝ) 103% ROS	
	lastroneurs. Aircartt wich board computer,	Tongue 0 to 60 MPH>	1750 Bollag 98.7568008 3.7 see	
		Top Speed Brake Rating	Utikatowa Expeliant	
	Special Equipment Retractable protective armore Weignotes Statistic Isommenes: A recett wron, based comprise	Wheel Base Length	141.0 m. 260 7 m	
		Width Height	91.1 in. 51 2 in	
		Wheels	Cast alloy, 15 x 6.5	
		Fuel Requirement	high oct 97% Special	

13. Create a help file as follows:

- 14. Create a webpage containing your bio data (assume the form and fields).
- 15. Write a html program including style sheets.
- 16. Write a html program to layers of information in web page.
- 17. Create a static webpage.

Word press:

- 18. Installation and configuration of word press.
- 19. Create a site and add a theme to it.
- 20 Create a child theme
- 21. Create five pages on COVID -19 and link them to the home page.
- 22. Create a simple post with featured image.
- 23. Add an external video link with size 640 X 360.
- 24. Create a user and assign a role to him.
- 25. Create a login page to word press using custom links
- 26. Create a website for your college.

A.P. State Council of Higher Education Semester-wise Revised Syllabus under CBCS, 2020-21

Course Code:

Four -year B.Sc.(Hons) Domain Subject: **Computer Science** IV Year B. Sc.(Hons) – Semester – V

Max Marks: 100 + 50

Course 7A: Web Applications Development using PHP & MYSQL

(Skill Enhancement Course (Elective), Credits: 05)

I. Learning Outcomes:

Students after successful completion of the course will be able to:

- 1. Write simple programs in PHP.
- 2. Understand how to use regular expressions, handle exceptions, and validate data using PHP.
- 3. Apply In-Built functions and Create User defined functions in PHP programming.
- 4. Write PHP scripts to handle HTML forms.
- 5. Write programs to create dynamic and interactive web based applications using PHP and MYSQL.
- 6. Know how to use PHP with a MySQL database and can write database driven web pages.

II. Syllabus: (*Total Hours: 90 including Teaching, Lab, and Field training, Unit tests etc.*)

Unit-1: (10 hours)

The Building blocks of PHP: Variables, Data Types, Operators and Expressions, Constants. Flow Control Functions in PHP: Switching Flow, Loops, Code Blocks and Browser Output. Working with Functions: What is function?, Calling functions, Defining Functions, Returning the values from User-Defined Functions, Variable Scope, Saving state between Function calls with the static statement, more about arguments.

Unit-2: (10 hours)

Working with Arrays: What are Arrays? Creating Arrays, Some Array-Related Functions. Working with Objects: Creating Objects, Object Instance Working with Strings, Dates and Time: Formatting strings with PHP, Investigating Strings with PHP, Manipulating Strings with PHP, Using Date and Time Functions in PHP.

Unit-3: (10 hours)

Working with Forms: Creating Forms, Accessing Form Input with User defined Arrays, Combining HTML and PHP code on a single Page, Using Hidden Fields to save state, Redirecting the user, Sending Mail on Form Submission, and Working with File Uploads. Working with Cookies and User Sessions: Introducing Cookies, Setting a Cookie with PHP, Session Function Overview, Starting a Session, Working with session variables, passing session IDs in the Query String, Destroying Sessions and Unsetting Variables, Using Sessions in an Environment with Registered Users.

Unit-4: (10 hours)

Working with Files and Directories: Including Files with inclue(), Validating Files, Creating and Deleting Files, Opening a File for Writing, Reading or Appending, Reading from Files, Writing or Appending to a File, Working with Directories, Open Pipes to and from Process Using popen(), Running Commands with exec(), Running Commands with system() or passthru().

Working with Images: Understanding the Image-Creation Process, Necessary Modifications to PHP, Drawing a New Image, Getting Fancy with Pie Charts, Modifying Existing Images, Image Creation from User Input.

Unit-5: (10 hours)

Interacting with MySQL using PHP: MySQL Versus MySQLi Functions, Connecting to MySQL with PHP, Working with MySQL Data. Creating an Online Address Book: Planning and Creating Database Tables, Creating Menu, Creating Record Addition Mechanism, Viewing Records, Creating the Record Deletion Mechanism, Adding Sub-entities to a Record.

III. References

1. Julie C. Meloni, SAMS Teach yourself PHP MySQL and Apache, Pearson Education (2007).

2. Steven Holzner, PHP: The Complete Reference, McGraw-Hill

3. Robin Nixon, Learning PHP, MySQL, JavaScript, CSS & HTML5, Third Edition O'reilly, 2014

4. Xue Bai Michael Ekedahl, The web warrior guide to Web Programming, Thomson (2006).

5. Web resources:

- e. <u>http://www.codecademy.com/tracks/php</u>
- f. <u>http://www.w3schools.com/PHP</u>
- g. <u>http://www.tutorialpoint.com</u>

6. Other web sources suggested by the teacher concerned and the college librarian including reading material.

IV. Co-Curricular Activities:

a) Mandatory: (Training of students by teacher in field related skills: (lab: 10 + field: 05) :

1. For Teacher: Field related training of students by the teacher in laboratory/field for not less than 15 hours on demonstrating various **interactive and dynamic websites** available online, addressing the students on identifying the case study to build an interactive and database driven website, forms to be used in website, database to be maintained, reports to be produced, etc.

2. For Student: Students shall (individually) search online and visit any of the agencies like malls, hotels, super bazaars, etc. where there is a need for an interactive and database driven website and submit a hand-written Fieldwork/Project work/Project work/Project work/Project work/Project work/Project work Report not exceeding 10 pages. Example: Choosing a firm or business to develop a website, identifying forms to be placed in the websites, back end databases to be maintained and reports to be generated and placed in the websites.

3. Max marks for Fieldwork/Project work/Project work/Proj

4. Suggested Format for Fieldwork/Project work/Project work/Project work: *Title page, student details, index page, details of place or websites visited, structure of the* website and acknowledgements.

5. Unit tests (IE).

b) Suggested Co-Curricular Activities

1. Arrange expert lectures by IT experts working professionally in the area of web content development

2. Assignments (in writing or implementing contents related to syllabus or outside the syllabus. Shall be individual and challenging)

3. Seminars, Group discussions, Quiz, Debates etc. (on related topics).

4. Preparation by students on best websites.

5. Arrange a webpage development competition among small groups of students.

Course 7A: Web Applications Development using PHP & MYSQL-PRACTICAL SYLLABUS

V. Learning Outcomes:

On successful completion of this practical course, student shall be able to:

- 1. Write, debug and implement the Programs by applying concepts and error handling techniques of PHP.
- 2. Create an interactive and dynamic website.
- 3. Create a website with reports generated from a database.
- 4. Write programs to create an interactive website for e-commerce sites like online shopping, etc.

VI. Practical (Laboratory) Syllabus: (30 hrs.)

- 1. Write a PHP program to Display "Hello"
- 2. Write a PHP Program to display the today's date.
- 3. Write a PHP program to display Fibonacci series.
- 4. Write a PHP Program to read the employee details.
- 5. Write a PHP program to prepare the student marks list.
- 6. Write a PHP program to generate the multiplication of two matrices.
- 7. Create student registration form using text box, check box, radio button, select, submit button. And display user inserted value in new PHP page.
- 8. Create Website Registration Form using text box, check box, radio button, select, submit button. And display user inserted value in new PHP page.
- 9. Write PHP script to demonstrate passing variables with cookies.
- 10. Write a program to keep track of how many times a visitor has loaded the page.
- 11. Write a PHP application to add new Rows in a Table.
- 12. Write a PHP application to modify the Rows in a Table.
- 13. Write a PHP application to delete the Rows from a Table.
- 14. Write a PHP application to fetch the Rows in a Table.
- 15. Develop an PHP application to implement the following Operations

- i. Registration of Users.
- ii. Insert the details of the Users.
- iii. Modify the Details.
- iv. Transaction Maintenance.
 - a) No of times Logged in
 - b) Time Spent on each login.
 - c) Restrict the user for three trials only.
 - d) Delete the user if he spent more than 100 Hrs of transaction.
- 16. Write a PHP script to connect MySQL server from your website.
- 17. Write a program to read customer information like cust-no, cust-name, itempurchased, and mob-no, from customer table and display all these information in table format on output screen.
- 18. Write a program to edit name of customer to "Kiran" with cust-no =1, and to delete record with cust-no=3.
- 19. Write a program to read employee information like emp-no, emp-name, designation and salary from EMP table and display all this information using table format in your website.
- 20. Create a dynamic web site using PHP and MySQL.